

INTER UNIVERSITY CENTRE FOR TEACHER EDUCATION REGIONAL INSTITUTE OF EDUCATION, MYSURU (NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING, NEW DELHI)

ALTERNATIVE INSTRUCTIONAL STRATEGIES FOR TEACHING DIFFICULT CONCEPTS IN SCIENCE AND MATHEMATICS FOR TEACHER EDUCATORS

Programme Coordinator Dr.S.PrasannaKumar Associate Professor of Science Education IUCTE, RIEM

ALTERNATIVE INSTRUCTIONAL STRATEGIES FOR TEACHING DIFFICULT CONCEPTS IN SCIENCE AND MATHEMATICS FOR TEACHER EDUCATORS

INTER UNIVERSITY CENTRE FOR TEACHER EDUCATION

REGIONAL INSTITUTE OF EDUCATION, MYSURU (NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING, NEW DELHI)

PREFACE

At the secondary stage the students should be engaged in learning science as a composite discipline, in working with hands and tools to design more advanced technological modules than at the upper primary stage, and in activities and analysis on issues surrounding environment and health. Systematic experimentation as a tool to discover/verify theoretical principles, and working on locally significant projects involving science and technology are to be important parts of the curriculum at this stage. Knowledge and understanding are fundamental to studying mathematics and form the base from which to explore concepts and develop problem-solving skills. Through knowledge and understanding students develop mathematical reasoning to make deductions and solve problems.

Teaching difficult concepts in science and mathematics is an ongoing problem in schools across the country. In secondary level, many students are not able to understand the required concepts in science and mathematics and hence their performance is not as expected. Due to this reason they face problem to learn difficult-concepts in Science and Mathematics. One of the reasons for this problem may be accounted to the traditional instructional strategies employed by the teachers. Once teachers are aware of the appropriate alternative instructional strategies, they can implement them in their own classrooms which will be a remedy to the problems faced by them to teach difficult concepts in science and mathematics. Therefore teacher should be trained to design, develop and implement the alternative instructional strategies for teaching difficult concepts in science and mathematics.

In this context, IUCTE has developed on "Alternative Instructional Strategies for teaching difficult concepts in Science and Mathematics for teachers and teacher educators." The successful development of this resource material is the result of the cooperation, confidence, endurance and support given by Prof. Y. Sreekanth, Chairman IUCTE and Principal, RIE (NCERT), Mysore. I also owe my due respects and gratitude to Prof. M.S. Talawar, Director, IUCTE, Mysuru and Prof. V. D. Bhat, Professor IUCTE for all the academic support given for this work.

Dr.S.Prasannakumar Associate Professor IUCTE-RIEM

CONTENTS

S.No	Description	Page No.
1	Preface	-
2	Report	1
3	Difficult Concepts in IX Science	10
4	Difficult concepts in X Science	11
5	Difficult Concepts in IX Mathematics	12
6	Difficult Concepts in X- Mathematics	13
7	List of Resource Persons	14
8	Schedule	17
9	Instructional Strategeis	18
10	Alternative Instructional Strategies	
	for Teaching Difficult Concepts of IX Standard Science	23
11	Alternative Instructional Strategies for Teaching	
	Difficult Concepts of X Standard Science	36
12	Alternative Instructional Strategies for Teaching	
	Difficult Concepts of IX Standard Mathematics	44
13	Alternative Instructional Strategies for Teaching	
	Difficult Concepts of X Standard Mathematics	58

REPORT

A Three Day Workshop on Designing Alternative Instructional Strategies for Teaching Difficult Concepts in Science and Mathematics for Teacher Educators (6 to 8 March 2019)

Introduction

Instructional strategies refer to the methods, techniques, procedures and processes that a teacher uses during instruction. These are strategies the teacher employs to assist student learning. Instructional strategies are techniques teachers use to help students to become independent learners. These strategies become learning strategies when teachers independently select the appropriate ones and use them effectively to accomplish tasks to meet the set goals.

Instructional strategies enable teachers to focus their attention, organize their learning material for better learning and also they help teachers to provide a suitable platform for strategic learning. The Alternative instructional strategies provide students with different approaches to learning the same content. Therefore, the selection of a strategy is critical and must be done with utmost care by teachers in coordination with their students.

Teaching difficult concepts in science and mathematics is an ongoing problem in schools across the country. At secondary level, many students are not able to understand the required concepts in science and mathematics and hence their performance is not as expected. Due to this reason they face problem to learn difficult-concepts in Science and Mathematics. One of the reasons for this problem may be accounted to the traditional instructional strategies employed by the teachers. Once teachers are aware of the appropriate alternative instructional strategies, they can implement them in their own classrooms which will be a remedy to the problems faced by them to teach difficult concepts in science and mathematics. Therefore teachers should be trained to design, develop and implement the alternative instructional strategies for teaching difficult concepts in science and mathematics. In this background a three day workshop was to be conducted on Designing Alternative Instructional Strategies for Teaching Difficult Concepts in Science and mathematics.

REPORT

Objectives of the Workshop

- To identify difficult concepts in science and mathematics at IX and X standard.
- To list out Instructional strategies
- To select alternative instructional strategies.
- To match the suitable alternative instructional strategies with the difficult concept
- To design alternative instructional strategies for teaching science and mathematics difficult concepts

Planning for the workshop

Programme Coordinator conducted survey to the teacher for identifying difficult concepts of IX and X standard Science and Maths lesson. He listed out number of the instructional strategies and circulated to the experts.

Day Wise proceeding of the workshop

Day -1, Date 6/03/2019

A three day Workshop on "Designing Alternative Instructional strategies for teaching difficult concepts in science and mathematics for classes IX and X was organized by Inter University Centre for Teacher Education, Regional Institute of Education (NCERT) Mysore on 6th to 8th March 2019. The inauguration was done by Prof. S. Ramaa, Principal In Charge and Dean of Instruction, RIE Mysore. Prof. M.S Talawar, Centre Director, delivered the Presidential address. Dr. K.K Murugan, Assistant Professor, Gandhigram Rural University, Gandhigram, spoke about importance of the workshop. Dr.S.Prasannakumar, the programme Coordinator presented the "concept note" on the workshop.

Inaugural session on 6thMarch 2019, Dr.Prasannakumar, Programme coordinator, delivered welcome address

There were two presentations. The first session was a presentation by Dr. Nagavalli, Associate Professor (Rted), Sarda College of Education, Salem, Tamilnadu. The title on "Instructional Strategies, Techniques and Methods" Dr.Nagavalli presented Strategies that determine the approach a teacher should take to achieve learning objectives. She classified Strategies as direct, indirect, interactive, experiential or independent. There were slots for detailed discussions and doubt clearing. There was a presentation by Dr.S.Prasannakumar, on "Teaching difficult concepts of Science through alternative instructional strategies". After this presentation, we conducted discussions and developed the lesson plan format for the Alternative instructional strategies.

Group activity was doing by the team of Science & Mathematics resource persons.

Group activity was doing by the team of Mathematics resource persons.

.

Group activity was doing by the team of Science resource persons.

Introduction on Instructional Strategies: Presented by Dr.Nagavalli, Associate Professor (Rted) Sarada college of Education, Salem, Tamilnadu

The Programme Coordinator, Dr.S.Prasannakumar, presented on the theme of the workshop

Group activity was doing by the team of Mathematics resource persons.

In the afternoon session, the resource persons were divided into two groups one for science and another for mathematics. The Programme coordinator distributed the resource materials for the instructional strategies for classes IX and X. Also NCERT text books for science and mathematics at secondary levels were distributed. The list of difficult concepts in science and mathematics were distributed to the group. The resource persons discussed, shared their knowledge and they designed the alternative instructional strategy on the basis of each difficult concept should be teach by using two or more different strategies, methods and techniques. The end of the first day, they designed alternative instructional strategies for five difficult concepts in science and mathematics.

Mathematics group resource person presented the outcomes of the workshop.

Day-2, Date 07/03/2019

In the second day, during the first session, the experts presented report of the first day activities. First session was started by reporting previous day activities. In the second session the experts discussed and developed alternative strategies with appropriate learning activities for 20 difficult concepts

The resource person delivered the feedback of the workshop

Day -3, Date: 08/03/2019

On the third day, during the first session report of the previous day was presented. In second session the experts were divided into science and mathematics groups. They matched alternative instructional strategies with the content knowledge and listed out appropriate learning activities. In the afternoon session the experts designed and developed alternative instructional strategies for teaching 40 difficult concepts of the science and mathematics topics from the syllabus of standard IX and X. The draft alternative instructional strategies for teaching difficult concepts in science were presented by a team including Mr. T.Balasubramaniyan, Assistant Professor, M.Kumarasamy college of Education, Karur, S.Karthikeyan, Science Teacher, Govt High School, Ramnad, and Mrs. Noor Afshan, Science Teacher, DMS, RIE Mysore. The draft of the alternative instructional strategies for teaching mathematics difficult concepts was presented by a team consisting of C.G.Elangovan, Lecturer, DIET, Dharmapuri and K.P. Ganesh, Mathematics Teacher, Avvaiyar Govt Girls Higher Secondary School, Dharmapuri. The valedictory function commenced at 4.00 p.m.Dr. V. D. Bhat, Professor, IUCTE, RIE, Mysore, presided over the function and he had distributed certificates to the experts.

Outcome of the Workshop: The Resource Material of "Alternative

Instructional Strategies for teaching difficult concepts in Science and Mathematics for teachers and teacher educators."

•••

Appendices

•••

• -

- 1. List of the Instructional Strategies.
- 2. List of the difficult concepts in IX and X standard science and Mathematics.
- 3. Programme Schedule.
- 4. List of the Participations.
- 5. The Resource Material on "Alternative Instructional Strategies for teaching difficult concepts in Science and Mathematics for teachers and teacher educators."

The resource person delivered the feedback of the workshop

.

Prof. V.D. Bhat, IUCTE, RIEM has discussed about the follow-up activities of the workshop

UCTE Faculty & resource persons photos

Difficult Concepts in IX Science

S.No	Lesson/Topic	Concept
1	Is Matter Around us Pure	 Suspension Colloidal Effect of Change of Pressure How matter are small
2	Is matter Around us Pure?	Law of Constant properties
3	Atoms and Molecules	Electronic Configuration
4	Structure of the atom	 Molecular Mass Mole concept
5	The fundamental unit of life	 Cell membrane cell wall endoplasmic reticulum
6	Tissues	Animal Tissues
7	Diversity in living organism	Classifications of Animals
8	Motion	Equations of motions
9	Force and laws of Motion	Conservation of Momentum
10	Gravitation	 1.Thrust and Pressure, 2.Velocity 3.Mass & weight
11	Work and energy	 Problem and calculation Potential Energy problems
12	Sound	 Propagation of sound Human ear Characteristics of waves
13	Why do we fall ill	1. Infection disease
14	Natural resources	 Carbon cycle , Mineral Riches in the soil
15	Improvement in food resources	Nutrient management

Difficult concepts in X Science

S.No	Lesson/Topic	Concept
1	Chemical Reactions and equations	 Chemical formula Valency Oxidation reduction Balancing the equations
2	Acids, bases and salts	 Concept of acids, bases Properties of acids and bases Ph, POH
3	Metals and Non metals	Chemical reactions of metals and non-metals
4	Carbon and its compounds	 Fomula and structure Classifications of carbon and derivatives Homolog series
5.	Periodic classification of elements	To remember the periodic classifications
6.	Life processes	Break down of glucose by various pathway
7.	Control and coordination	Central Nervous system
8.	How do organisms Reproduce	 Reproduction in human Plant reproduction
9.	Heredity and Evolution	 Evolution Rules of the inheritance of traits
10	Light-reflection and refraction	 Lens Images formed by different positions of the object in concave and convex lens
11	The Human eye and the colourful world	Human eye
12.	Electricity	1,Circuit diagram 2,Electrical potential and difference
13	Magnetic Effects of Electric current	Difference between Ac & Dc
14	Source of Energy	Nuclear fission and fusion
15	Our Environment	Ozone layer & how it's getting depleted

Difficult concepts in IX Mathematics

1	set	Practical problems on set operation
2	Real numbers	Rationalisation of surds
3	Algebra	Factorising the quadratic polynomial & trinomial
4	Geometry	Properties of chords of a circle
5	Statistics	Arithmetic mean-grouped frequency distributions
6	Probability	Mutually exclusive event
7	Coordinate geometry	Positions of orthocentre and circumcentre
8	Algebra	Word Problems based on linear equations in two variables
9	Mensuration	Application for the Heron's formula
10	Algebra	Consistency and inconsistency of linear
		equations in two variables

Difficult concepts in X Mathematics

S.No	Lesson/Topic	Difficult Concept
1	Sets& Functions	Solving Problem using Venn Diagram
2	Sequences & Series	Solving word problem in G.P
3	Algebra	Solution of a quadratic equation by completing square
4	Matrices	Solving equation
5	Co-ordinate geometry	Equation of a straight line
6	Trigonometry	Heights and distances
7	Mensuration	Combined figures and invariant volumes
8	Statistics	Measure of dispersion
9	Probability	Addition theorem on probability
10	Geometry	Solving word problem using

List of Resource Persons

A Three Day Workshop on

Designing Alternative Instructional Strategies for Teaching

Difficult Concepts in Science and Mathematics for Teacher Educators

(6 to 8 March 2019)

Sl.no	Name	Name of the Institution
1	Dr.Nagavalli .	Associate Professor (Retd.,) Saratha college of Education, Salem, Tamilnadu
2	Mrs.Vaijayanthi,	Assistant Professor(SS), Department of Education Avinashilingam University, Coimbatore, Tamilnadu
3	C.G. Elangovan,	Lecturer, DIET, Dharmapuri Tamilnadu.
4	J.Navaneetha Krishnan,	Assistant Professor Government College of Education,Komarapalayam Namakal(DT), Tamilnadu
5	Prof. M. S. Talawar	Center Director, IUCTE, Regional Institute of Education Mysore
6	Dr.S.Prasannakumar	Associate professor, IUCTE, Regional Institute of Education Mysore.
7	Prof. V. D. Bhat	Professor, IUCTE Regional Institute of Education Mysore

	• • • • • • • • • • • • • • • • • • • •	
8.	Dr.A.Divyapriya	Associate Professor IUCTE, Regional Institute of Education Mysore
9.	Dr.K. K. Chandini	Associate Professor IUCTE, Regional Institute of Education Mysore
10.	Mr. Shravan Kumar Pendyala	Assistant Professor IUCTE, Regional Institute of Education Mysore
11.	Mr. Prasanna Kumar T. K.	Assistant Professor IUCTE, Regional Institute of Education Mysore
12.	Mr. T.Balasubramanian,	Assistant Professor, M.Kumarasamy College of Education, Karur.
13.	Dr. J.Immanuvel johnson,	Assistant Professor, Sri Ramakrishna Mission vidyalaya College of Education, Coimbatore.
14.	Mr.ManickasamyAssistant	Professor, Sri Ramakrishna Mission vidyalaya College of Education Coimbatore.
15.	K.P Ganesh,Avvaiyar	Govt Hr. Sec. School, Dharmapuri.
16.	H.Shanawas,	Graduate Teacher, Govt Model HSS School, Karimangalam, Dharmapuri
17.	R.Ragothaman,	Govt High School, Theethipalayam, Coimbatore
18.	P.M. Rajasekar,B.T	Assistant (Maths) Govt High School, Barigam, Esalpatti(PO), Dharmapuri

.

19.	K.S.A Mohamed Yousuf	Jainulabuden, Manbaul uloom Hr.Sec. School Coimbatore
20.	S. Karthikeyan,	BT Assistant, Govt High School, Elanjemboor, Ramand
21.	T.MuruliS.A.	Mathematics ZPHS, Karakambadi Chittoor, Andhra Pradesh
22.	KMV. Mohan kumarS.A.	Mathematics, ZPHS, Karakambadi, Chittoor. Andhra Pradesh
23.	M. SenthilkumarB.T.	Assistant ,GBHSS, Lakkiyampatti, Dharmapuri
24.	Divya R. PGT, Mathematics	DMS, RIE, Mysuru
25	Mrs. Noor Afshan TGT Science	DMS, RIE, Mysuru.

Schedule

A Three Day Workshop on

Designing Alternative Instructional Strategies for Teaching Difficult Concepts in

Science and Mathematics for Teacher Educators (6 to 8 March 2019)

•	Day	Date	DATESESSION -1		SESSION - 2	SESSION -3		SESSION - 4		SESSION-5	SESSION- 6	
-	1	06/03/19	9.00-09.30am Registration 9.30-10.00am Inauguration 10.00-10.45am Introduction to Workshop	Tea Time 10.45 to 11.00 am	11.00-12.00 pm Introduction & Designing of Alternative Instructional strategies Dr.Nagavalli & Dr.S.Prasannakumar	12.00-1.00 pm Group Discussion & preparation of lesson format	Lunch 1.00 to 2.00pm	2.00-3.30pm Group work - designing of the strategies	Tea Time 3.30 to 3.45pm	3.45-4.45pm Group work- develop model lesson plan (Ist 10 concepts)	4.45.00- 5.00pm Presentation	
	2	07/03/19	9.00-9.30am Review &Group Discussion 9.30 - 10.45am Group work Writing strategies	Tea Time 10.45 to 11am	11.00- 12.30 pm Group work preparation of lesson format (II nd 10 concepts)	12.30-1.00pm Presentation	Lunch 1.00 to 2.00pm	2.00-3.30pm Group work design of the strategies (II nd 10 concepts)	Tea Time 3.30 to 3.45pm	3.45-4.45pm Group work develop model lesson plan (II nd 10 concepts)	4.45 - 5.00pm Presentation	11 11
	3	08/03/19	9.00-9.30am Review &Group Discussion 9.30 - 10.45am Group work design the learning activities	Tea Time 10.45 to 11am	11.00- 12.00 pm Group work design the learning activities	12.00-1.00pm Group work format the designing document. (III rd 10 concepts)	Lunch 1.00 to 2.00pm	2.00-3.30pm Group work- format the design document. (III rd 10 concepts)	Tea Time 3.30 to 3.45pm	3.45- 4.15pm Presentation	4.15- 5.00pm Valedictory & Certificate Distribution	

Instructional Strategeis

Instructional Strategeis

25.1

STRATEGIES	TECHNIQUES /ACTIVITIES
Brainstorming	Brainstorming is a process that allows for the free flow of ideas. A topic/question is introduced and relevant words and phrases are accepted without criticism of judgment. It works to generate a wide variety of ideas. That can they be evaluated as relevant to the subject.
Concept Attainment	It is a teacher centered activity involving the use of critical thinking to determine the critical attributes of a given example of an idea or concept. This indirect process of inquiry leads to the identification of the concept being taught. Before beginning the activity the teacher should determine. 1. The name of the concept 2. The concept definition or rule 3. Conceptual attributes 4. Examples of the concept 5. Relationship of the concept to other concepts Steps in use concept attainment strategy: 1. Select and define a concept 2. Select the attributes 3. Develop positive and negative examples 4. Introduce the process to the students 5. Present the examples and list the attributes 6. Develop a concept definition 7. Give additional examples 8. Discuss the process with the class 9. Evaluate

Concept formation	organize and classify items classify items by their characteristics making connection seeing relationships and generalization of the data.
Concepts maps	Web diagram for exploring knowledge about given concept. Central circle – contains the concept being examined; linking ideas are then labelled with lines indicating the connection to the central idea and other links.
Focused imaging/ visualisation	The process of creating mental image
Graphic organizers	A graphic organiser is a visual representation used to visually represent the relationships and patterns between the ideas and facts presented in a lesson.
Role playing	Role playing allows students to take risk-free positions by acting out characters in hypothetical situations. It can help them understand the range of concerns, values and positions held by other people. Role playing is an enlightening and interesting way to help by other. Role playing is an enlightening and interesting way to help students see a problem from another perspective.
Scaffolding	 Teacher models the desired learning strategy or task, then gradually shifts responsibility to the students task definition model performance while thinking out loud -either direct or indirect instruction specification and sequencing of activities provide prompts, cues, hints, links, partial solutions, guides and structures fade when appropriate
Simulations	Simulation refers to the imitation of real-world activities and processes in a safe environment. Simulations aim to provide an experience as close to the 'real thing' as possible; however, a simulated activity has the advantage of allowing learners to 'reset' the scenario and try alternative strategies and approaches. This allows learners to develop experience of specific situations by applying their wider learning and knowledge.

Discovery/Inquiry-based learning	Inquiry learning is based on constructivist theories of learning, where knowledge is "constructed" from experience and process. It covers a range of approaches, including: field work, case studies, investigations, individual and group projects, and research projects. It is the hallmark strategy of science, and often social science, learning. Specific learning processes that students engage in during inquiry include: developing questions, seeking evidence to answer questions, explaining evidence, and justifying or laying out an argument for the evidence. Progress and outcomes are assessed through observing students' learning develop over time through conversations, notebook entries, student questions, procedural skills, use of evidence, and other techniques.
Generating and testing hypotheses	At an application level, generating and testing hypotheses requires students to use knowledge to extend their understanding or generate new knowledge. It is a fundamental of science learning, problem solving, and historical investigations. The process can be deductive (starting from a general rule or law) or inductive (drawing a conclusion or generalizing from a set of data or information). Asking students to explain their hypotheses, process, and conclusions, ideally in writing, strengthens student learning and accountability.
Hands-on learning	Hands-on learning is an educational strategy that directly involves learners by encouraging them to do something in order to learn about it. It is learning by doing. Some subject matter like music and art are inherently hands-on; others like higher levels of mathematics are more abstract. Nonetheless, all learning can benefit from activity that stimulates different regions of the brain. For younger learners, those learning English or another language, or those with learning disabilities, thoughtful hands-on teaching strategies are their keys to learning.
Modelling	Modelling is an instructional strategy wherein the teacher or another student demonstrates a new concept or skill and students learn by observing and emulating. Modelling is an effective instructional strategy when it allows students to observe thought processes and imitate particular behaviours or steps in a process. Types and purposes of modelling can include approaches such as task and performance modelling (demonstrating a task), metacognitive modelling (thinking aloud)
Analogy	 Analogy is a process of identifying similarities between two concepts. Learners can be introduced to a new concept by relating it with some familiar concept they already possess. 1. Introduce target concept. 2. Cue retrieval of analogy concept. 3. Identify relevant features of target and analogy. 4. Map similarities between target and analogy. 5. Indicate where analogy breaks down. 6. Draw conclusions

Problem solving	 Defining the problem Analysing the problem Formulating Hypotheses Testing of hypotheses Collecting the data Interpretation of the data Finding conclusion
Reciprocal teaching	Reciprocal teaching refers to an instructional activity in which students become the teacher in small group reading sessions. Teachers model, then help students learn to guide group discussions using four strategies: summarizing, question generating, clarifying, and predicting.
Generating and Testing Hypotheses	Ask students to predict what would happen if an aspect of a familiar system, such as the government or transportation, were changed. Ask students to build something using limited resources. This task generates questions and hypotheses about what may or may not work.
Summarizing and Note-taking	This strategy promotes comprehension because students have to analyze what is important and what is not important and put it in their own words. This strategy also Enhances students' ability to synthesize Information and organize it in a way that captures the main ideas and supporting details.
	Sample activities related to this strategy as follow: Provide a set of rules for asking students to summarize a literary selection, a movie clip, a section of a textbook, etc. Provide a basic outline for note-taking, having students fill in pertinent information.

Reinforcing Effort and Providing Recognition	This strategy provides students with a direction for learning and with information about how well they are performing about a particular learning objective so they can improve their performance. Setting objectives can provide students with a direction for their learning. Goals should not be too specific; they should be easily adaptable to students' own objectives.
	Sample activities related to this strategy as follow:
	Set a core goal for a unit, and then encourage students to personalize that goal by identifying areas of interest to them. Questions like "I want to know" and "I want to know more about…" get students thinking about their interests and actively involved in the goal-setting process.
	Use contracts to outline the specific goals that students must attain and the grade they will receive if they meet those goals.
	Make sure feedback is corrective in nature; tell students how they did in relation to specific levels of knowledge. Rubrics are a great way to do this.
Project-based learning Project-based learning: Students independently gather resources and	 The teacher sets the goals for the learner, and then allows the learner to explore the topic and create their project. The teacher is a facilitator in this student-cantered approach and provides scaffolding and guidance when necessary.
information to create a project and/or product.	 Proponents of project-based learning cite numerous benefits of these strategies including a greater depth of understanding of concepts, broader knowledge base, improved communication and interpersonal/social skills, enhanced leadership skills, increased creativity, and improved writing skills. When students use technology as a tool to communicate with others, they take on an active role vs. a passive
	role of transmitting the information by a teacher, a book, or broadcast. The student is constantly making choices on how to obtain, display, or manipulate information

ALTERNATIVE INSTRUCTIONAL FOR TEACHING DIFFICULT **CONCEPTS IN SCIENCE** STRATEGIES

Alternative Instructional Strategies for teaching difficult concepts of IX Standard Science

S.No	Contents	Methods	Strategies	Techniques	Teacher's Activities	Student's Activities
1	MATTER AROUND US PURE 1.1 Suspension	Demonstration	As1. Concept attainment	Illustration	Teacher demonstrates concept of suspensions by mixing sand	Students observe the suspended particles
	A suspension is a heterogeneous mixture in which the solute particles do not deserve but remain suspended through all the bulk of the medium	Questioning	As2. Brainstorming	Critical thinking	with water	and response the teacher's question.
	through all the bulk of the medium. Particles of suspension are visible to the naked eye.	Discussion	As3. Inquiry based learning	Task designation		
	 1.2.Properties of Suspension The particles of a suspension scatter a beam of light passing through it and make its path visible. The solute particles settle down when a suspension is left undisturbed, that is, a suspension is unstable. They can be separated from the mixture by the process of filtration. When the particles settle down, the suspension breaks and it does not scatter light any more. 	Demonstration	As1. Direct Instruction AS2. Hands on learning	Explaining Procedural knowledge	Critically making the students to analyse	Students infer to share the knowledge

1.3. Colloids The particles of a colloid are uniformly	Discussion	AS1. Concept attainment	Illustrations	Teacher gives	Observe the		
	relatively smaller size of particles, as compared to that of a suspension, the mixture appears to	Problem solving	AS2. Interactive Instruction	Group activity	sinulated package	sinulations	
	be homogeneous. But actually, a						-
	colloidal solution is a heterogeneous						-
	mixture, for example, milk.						
	Tyndall effect can also be observed						÷.
	when a fine beam of light enters a room						
	through a small hole. This happens due to						:
	the scattering of light by the particles of						:
	dust and smoke in the air.						
	Tyndall effect can be observed when						
	sunlight passes through the canopy of a						
	dense forest.						
	Properties of a Colloid						
	The size of particles of a colloid is too						
	small to be individually seen by naked						
	eyes. They do not settle down when left						•
	undisturbed, that is, a colloid is quite						•
	stable.						•

	1.4.Effectofchangeofpressure Airisahomogeneousmixtureandcan	Laboratory	AS:1Reflective thinking	Learning by doing	Teacher facilitating the experiment	Realising the concept
	beseparated into its components by fractional distillation.					
If actional distillation. If we want oxygen gas from air, we have to separate out all the other gases present in the air. The air is compressed by increasing the pressure and is then cooled by decreasing the temperature to get loquitur. This liquid air is allowed to warm-up slowly in a fractional distillation column, where gases get separated at different heights depending upon their boiling points.	Demonstration	AS:2 Brainstorming	Questioning			
	1.5. How matter are small On the basis of their chemical composition, substances can be classified either as elements or compounds.	Bio graphical	As1. Inquiry	Illustration.	_	

Elements

Robert Boyle was the first scientist to use the term element in 1661. Antoine Laurent Lavoisier (1743-94), a French chemist, was the first to establish an experimentally useful definite down into simpler substances by chemical reactions.

Compounds have fixed composition can be broke down into elements by chemical or electro chemical reactions. For eg, Water, methane, sugar, salt etc.

Pure substances can be elements or compounds. An element is a form of matter that cannot be broken down by chemical reactions into simpler substances. A compound is a substance composed of two or more different types of elements, chemically combined in a fixed proportion.

	Historical	As2. Brain storming	Questioning	Teacher explains the how matter become small substance.	Students understand the how matter is small.
ne	Demonstration	As3: Discussion	Interaction		
0					
S					
n vn					
e					

2.	2.1 Law of Constant properties Properties of a compound are different from its constituent elements, whereas a mixture shows the properties of its constituting elements or compounds.	Analytical Explaining	AS:1 Concept formation As2: Concept formation	Group Discussion Generalizations	Summarizing	Observing
	 3. STRUCTURE OF THE ATOM 3.1 Molecular Mass The molecular mass of a substance is the series of the structure of all substance 	Deductive	AS1: Problem solving	Minds on training	Teacher explain in detail the molecular	The students understand the molecular mass and its
3.	the atoms in a molecule of the substance. (a) Calculate the relative molecular	Activity	As2:Drill and Practice	Hands on experience	mass with help of visualization	calculation.
	 mass of water (H₂O). (b) Calculate the molecular mass of HNO₃ 					
	Solution: (a) Atomic mass of hydrogen = 1u, oxygen = 16 u So the molecular mass of water, which contains two atoms of hydrogen and onetime of oxygen is					

= $2 \times 1 + 1 \times 16 = 18$ u (b) The molecular mass of HNO3 = the atomic mass of H + the atomic mass of N+ 3 × the atomic mass of O = $1 + 14 + 48 = 63$ u					
3.2 Mole concept One mole of any species (atoms,	Inductive	AS1.Focus Imaging	Hypothetical Learning		
molecules, ions or particles) is that quantity in number having a mass	Demonstration	AS2.Concept formation	Generalization	Questioning and Explaining	Model preparation
equal to its atomic or molecular mass in grams.	Discussion	AS3.Concept attainment	Inquiry		
 $1 \text{ mole} = 6.022 \times 10^{-1} \text{ number}$					
 4. ATOMS AND MOLECULES 4.1 Electronic Configuration The distribution of electrons into different orbits of an atom was suggested by Pohrand Pury 	Group activity	AS1.Collabrative learning	Role play		
The following rules are followed for writing the number of electrons in different energy levels or shells: (I) The maximum number of electrons present in a shell is given by the	Explaining	AS2.Simulation	Visuospatial	Teacher provides learning environment	Students actively
formula 2n2, where 'n' is the orbit number or energy level index, 1,2,3,Hence the maximum number of electrons in different shells are	Multimedia Demonstration	As3. Modelling	Multisensory	for experiential learning	understand the concept.

4.

						• •
as follows: first orbit or K-shell will be = $2 \times 12 = 2$, second orbit or L-shell will be= $2 \times 22 = 8$, third orbit or M-shell will be = $2 \times 32 = 18$, fourth orbit or N-shell will be = $2 \times 42 = 32$, and so on. (ii) The maximum number of electrons that can be accommodated in the outermost orbit is 8. (iii) Electrons are not accommodated in agiven shell, unless the inner shells are Filled. That is, the shells are filled in a step-wise manner.						
 5. THE FUNDAMENTAL UNIT OF LIFE 5.1 Cell wall and Cell membrane Cell wall is the outermost covering of the cell in plants that separates the 	Demonstration	AS1.Focused Imaging	Modelling	Teacher explains and	Observes the process of osmosis through the	
contents of the cell from its external environment. The plasma membrane allows or permits the entry and exit of some materials in and out of the cell. It also prevents movement of some other materials.	Visualizations	AS2.Simulations	Memory	demonstrates cells and its organelles.	experiment and draw the diagram and labels.	
	•	• • • • • •				•

The cell membrane, therefore, is called a selectively permeable membrane. Osmosis and diffusion are the physical phenomenon happened in the cell membrane. i.e., the exchange of gases and water.					
5.2 Endoplasmic Reticulum The endoplasmic reticulum (ER) is a large network of membrane-bound tubes and sheets. It looks like long	Discussion	AS1.Modeling	Improvised Apparatus	With the help of a diagram teacher list out the difference between rough and smooth ER	Understands the differences of rough and smooth ER.
tubules or round or oblong bags (vesicles). The ER membrane is similar in structure to the plasma membrane. There are two types of ER - rough endoplasmic reticulum (RER) and	Heuristic	AS2.Concept mapping	Sensory Techniques		
smooth endoplasmic reticulum (SER). ER is to serve as channels for the transport of materials(especially proteins) between various regions of					
the cytoplasm or between the cytoplasm and the nucleus.					
6. TISSUES

6

7

6.1 Animal Tissues

A group of cells collectively called as tissue. In animal, the specialized cells called muscle cell. There are four types of tissues in animal. They are Epithelial tissue, Connective tissue, Muscular tissue and Nervous tissue.

7. DIVERSITY IN LIVING ORGANISM

7.1 Classification of Animals

The identification and naming of animal species in an organized manner which we call it as classification.

The classification is done by naming the sub-groups at various levels as given in the following scheme:

> (i) Kingdom (ii) Phylum (for animals) (iii) Class

- (iv) Order
- (v) Family
- (vi) Genus

(vii) Species

	Demonstration Discussion Visualization	AS1.Concept mapping AS2.Concept attainment AS3.Simulation	Illustration Differentiation Visuospatial	With the help of concept map teacher and slide presentation and summarizing concept of animal tissues.	Observes and differentiates between different types of tissues and its function.	
of	Explaining	AS1.Concept mapping	Similarities and differences			
of oy us ng	Historical method	As2. Scaffolding	Illustrations	Make a field trip and	Students observe and	
	Field visit	As3 Observation	Direct experience	and shows to the students in the laboratory.	And discuss in groups the diversity of phylum.	
	Demonstration	As 4 :Modelling	Visualization			

8. MOTION 8.1 Equations of motion

8

Graphs provide a convenient method to present basic information about a variety of events. To describe the motion of an object, we can use line graphs. In this case, line graphs show dependence of one physical quantity, such as distance or velocity, on another quantity, such as time. DISTANCE - TIME GRAPHS VELOCITY - TIME GRAPHS

8.2 Equations of Motion by Graphical Method

When an object moves along a straight line with uniform acceleration, it is possible to relate it velocity, acceleration during motion and the distance covered by it in a certain time interval by a set of equations known

nient ation cribe	Deductive and inductive	AS1.Problem solving	Inquiry learning	Teacher shows plotting	Students observe to draw and label the graph. Student plotting graphs for different
e line show ntity, other	Activity	AS2. Hands on training	Procedural Memory	of graphs explains steps involved in plotting	values of distance and time. They able to compare Distance - Time, Velocity - Time graph.
te its ion a					

as the equations of motion. For	Visualization	As3. Mapping	Mnemonics
convenience, a set of three such			
equations are given below:			
v = u + at(8.5)			
$s = ut + \frac{1}{2} at^{2} (8.6)$			
2 a s = v2 - u2 (8.7)			
where u is the initial velocity of the			
object which moves with uniform			
acceleration a for time t, v is the final			
velocity, and s is the distance travelled			
by the object in time t.			
Eq. (8.5) describes the velocity-			
time relation and Eq. (8.6) represents			
the position-timerelation. Eq. (8.7),			
which represents the relation between			
the position and the velocity, can be			
obtained from Eqs. (8.5) and (8.6) by			
eliminating t. These three equations			
can be derived by graphical method			

9. FORCE AND LAWS OF The teacher explains Students observe and and using models and understand the concept **MOTION** AS1.Simulation derives equation of conservation of Demonstration Illustration 9.1 Conservation of momentum relevant to the momentum. Suppose two objects (two balls A conservation of and B, say) of masses m_A and m_B are momentum. travelling in the same direction along a straight line at different velocities u_A and $u_{\rm B}$, respectively. And there are no other external unbalanced forces acting on them. Let $v_{\rm A} > v_{\rm B}$ and the two balls collide with each other. During collision which lasts fora time t, the ball A exerts a force F_{AB} on ball Band the ball B Learning by AS2.Hands on exerts a force F_{BA} on ball A. Suppose Experimentation learning doing $v_{\rm A}$ and $v_{\rm B}$ are the velocities of the two balls A and B after the collision, Respectively. As a result of this ideal collision experiment, we say that the sum of momenta of the two objects before collision is equal to the sum of momenta after the collision provided there is no external un balanced force acting on them. This is known as.

the law of conservation of momentum This statement can alternatively be given as the total momentum of the two objects is unchanged or conserved by the collision

10. NATURAL RESOURCES

10.1 Carbon cycle

10

Carbon is found in various forms on th Earth. It occurs in the elemental form a diamonds and graphite. In the combined state, it is found as carbon dioxide in th atmosphere, as carbonate and hydroge carbonate salts in various minerals, while a life -forms are based on carbon containingmolecules like proteins carbohydrates, fats. Nitrogen-cycle i nature nucleic acids and vitamins. Th endoskeleton sand exoskeletons of variou animals are also formed from carbonat salts. Carbon is incorporated into life-forms through th basic process of photosynthesis which is performed in the presence of Sunlight by all life-forms that contain chlorophyll.

performed in the presence of Sunlight by all life-forms that contain chlorophyll. Carbon is thus cycled repeatedly through different forms by the various physical and biological activities

1						
ie is	Demonstration	AS1.Concept mapping	Explaining	Teacher show the chart and explain the concept.	Students make Inquiry question and understand the concept.	
ed ne	Discussion	AS2.Concept attainment	Questioning			
n 11	Interactive	AS3.Inquiry based learning	Reflective discussion			
s,						
ie is						
te						
ie						
11						
4						

Alternative Instructional Strategies for teaching difficult concepts of X Standard Science

S.No	Contents	Methods	Strategies	Techniques	Teacher's Activities	Student's Activities
1	1.CHEMICAL REACTIONS AND EQUATION	Brainstorming	AS1. Focused imaging	Visuospatial	Teacher presents with pictorial representation	Students' active participate.
	1.1.Chemical formula Chemical equations can be made more					
	concise and useful if we use chemical formulae instead of words. A chemical equation represents a chemical reaction.	Problem solving	AS2. Visualization	Visual image		
	Balanced Chemical Equations The total mass of the elements present in the products of a chemical	Questioning	As3. Hands on training	Drill and practice	Encouraging Students to share their thoughts.	Students discuss with in the group. Observation
	Reaction has to be equal to the total mass of the elements present in the reactants. Is the following chemical equation	Discussion	As4. Collaborative learning	Gaming		
	balanced? The word-equation for Activity represented as – Zinc+Sulphuric acid \rightarrow Zinc sulphate + Hydrogen The above word-equation represented by the following chemical equation – Zn+H ₂ SO ₄ \rightarrow ZnSO ₄ +H ₂					

1.2. Oxidation and Reduct	ion
---------------------------	-----

If a substance gains oxygen or loses hydrogen during a reaction, it is oxidised. If a substance loses oxygen or gains hydrogen during a reaction, it is reduced.

Oxygen is added to copper and copper Pro oxide is formed.

 $2Cu + O_2 \rightarrow 2CuO$

If hydrogen gas is passed over this heated material (CuO), the black coating on the surface turns brown as the reverse reaction takes place and copper is obtained. Heat $CuO+H_2\rightarrow Cu+H_2O$ The examples of redox reactions are:

The examples of redox reactions and

 $ZnO+C \rightarrow Zn+CO$ $MnO_{2+}4HCl \rightarrow MnCl_{2}+2H_{2}C$

In reaction carbon is oxidised to CO

and ZnO is reduced to Zn.

In reaction HCl is oxidised to $\ensuremath{\text{Cl}}_{\scriptscriptstyle 2}$

whereas MnO₂ is reduced to MnC

n or loses on, it is es oxygen eaction, it	Demonstration	AS1.Direct instruction	Illustration	Teacher demonstrates the concept of oxidation and reduction
nd copper	Problem solving	AS2. Visualization	Interaction	
over this he black	Discussion	AS3.Focused imaging	Visuospatial	
brown as place and	Deductive	AS4 : Problem solving	Interactions	
ons are:				
$O + Cl_2$ sed to CO				
ed to Cl_2 Mn Cl_2 .				

Students observes the activity

2.ACIDS BASES AND SALTS 2.1.Concepts of acids, bases

2

Acids are sour in taste and change the colour of blue litmus to red, whereas, bases are bitter and change the colour of the red litmus to blue. Litmus is a natural indicator, turmeric is another such indicator.

2.2. Properties of acids and bases

These indicators tell us whether a substance is acidic or basic by change in colour. There are some substances whose odour changes in acidic or basic media. These are called olfactory indicators.

2.3. pH and pOH

How strong are acid or base solutions? Importance of pH in Everyday Life Importance of pH in Everyday Life

e s, r a r	Discussion	AS1.Concept attainment AS2.Concept formation	Classifies Relationships	Teacher Illustrates and explains the content of acids and bases.	Students recall and recognize the concept of acid and base.	
a e s	Laboratory	AS1.Hands on training	Procedural Memory	Teacher explain the concept through the laboratory environment	Students observe the experiment and record the observation.	
c y	Inquiry	AS2.Problem solving	Reflective thinking			
>	Questioning	As1. Brainstorming	Mnemonics	Teacher explains, demonstrates and	Student records the observation and actively participate in classroom.	
	Problem solving	AS2. Formulation of Hypothesis	Interpretation	summarizes relevant to pH		
	Project method	As3. Demonstration	Testing and Identification			
	Concept Map	As4. Visualization	Visuospatial			

CARBON AND ITS COMPOUNDS 3.1.Formula, structure	Explaining Structured	As1. Role playing As2. Visualization	Drill practice Visual image,	Teacher presents pictorial representation	Students actively participate.
Classification of carbon and derivatives	Discussion	As3. Stimulation	perception, Memory		
3.2. Homolog Series Carbon atoms can be linked together to form chains of varying lengths. These chains can be branched also. In addition, hydrogen atom or other atoms on these carbon chains can be replaced by any of the functional groups that we saw above. The presence of a functional group such as alcohol decides the properties of the carbon compound, regardless of the length of the carbon chain. For example, the chemical properties of CH3OH, C2H5OH, C3H7OH and C4H9OH are all very similar. Hence, such a series of compounds in which the same functional group substitutes for hydrogen in a carbon chain is called a homologous series.	Explaining	AS1. Concept formation	Reflective Thinking	Teaching explains the concept in detail with the help of pictorial representation	Student prepare mind map.
	Discussion	AS2. Concept mapping	Association (Finding relationship)		

4	4.LIGHT REFLECTION AND REFRACTIONS 4.1 Lens	Explaining	As1. Brain storming	Classifies/ Clarifies / Discriminates	Teacher explains the type of lens and its basic concept	Student realizes the basic concept of lenses.
	4.2 Images formed by different positions of the object in concave	Demonstration	AS2.Hands on training	Drill and practice		
	and convex lens.	Laboratory Method	AS3.Problem solving	Manipulation Interpretation		
		Visualization	As 4. Multimedia assisted teaching	Attention, Memory		
5	5.ELECTRICITY 5.1Circuit Diagram	Demonstration	As1. Visualization	Visual attention Iconic memory	Demonstrates & explains the formation of circuit diagram	Observes and understands circuit diagrams
	If the electric charge flows through a conductor (for example, through a metallic wire), we say that there is an electric current in the conductor. In a torch, we know that the cells (or a battery, when placed in proper order) provide flow of charges or an electric current through the torch bulb to glow. We have also seen that the torch gives light only when its switch is <i>on</i> . What does a switch do? A switch	Laboratory method	AS2.Learning by doing	Hands on training		

makes a conducting link between the cell and the bulb. A continuous and closed path of an electric current is called an electric circuit. $ \begin{array}{c} \hline \\ \hline $					
5.2.Electrical potential and difference	Demonstration	AS1.Concept formation	Explaining	Teacher demonstrates and explain the electrical potential and difference	Student observes, analyze the electrical potential difference
	Experimental	AS2.Learning by doing	Collaborative learning		through hands on training with graphical representation.
	Laboratory	As3.Hands on learning	Procedural Experience		
	Visualizations	AS4.Graphical representation	Imagery		

6.MAGNETIC EFFECT OF ELECTRIC CURRENT	Demonstration	AS1.Concept Attainment	Discussion	Teacher explains and differentiates	Students recognize the concept of
6.1 Difference between AC & DC					
LIFE PROCESS	Laboratory	AS2.Inquiry	Problem solving	AC and DC motor	differences of AC and DC electric current.
7.1. Breakdown of glucose by various pathway	Explaining	AS3.Simulation	Focused imaging		
The first step is the break-down of glucose, a six-carbon molecule, into a three-carbon molecule called pyruvate. This process takes place in the cytoplasm. Further, the pyruvate may be converted into ethanol and carbon dioxide. This process takes place in yeast during fermentation. Since this process takes place in the absence of air (oxygen), it is called anaerobic respiration. Break down of pyruvate using oxygen takes place in the mitochondria. This process breaks up the three-carbon pyruvate molecule to give three molecules of carbon dioxide. The other product is water. Since this process takes place in the presence of air (oxygen), it is called aerobic respiration.	Demonstration Discussion Visualizations	AS1.Simulation AS3.Concept formation AS4: Concept Mapping	Inquiry Observation Web diagram Flowchart	Demonstrates Anaerobic respiration. Explains the concept Teacher explains aerobic respiration.	Observes and records the reaction students from the mind map for aerobic respiration. Using the flowchart to show the breakdown of glucose into Co2, H2o & energy

8	8.HEREDITY AND EVOLUTION 8.1 Evolution	Historical	AS1: Brainstorming	Questioning	Teacher explains the historical evidences of evolution.	Students observe and recognize the historical events.
		Biographical Method	AS2:Concept attainment	Web diagram	Teacher elucidates the	Students draw the mind
		Discussion	AS3: Inquiry learning	Comparative & Discriminative learning	different concepts in evolution.	map for the stage of evolution
		Explaining	As4: Analogy	Discussions		
9	9.OUR ENVIRONMENT 9.1 Ozone layer and how it's getting depleted	Discovery	As1: Brainstorming	Questioning	Explains the importance of ozone in our environment. Teacher uses concept maps to summarizing	Students observe and recognize the pollutant that causes depletion of ozone. Students uses mind map to understand the
		Explaining	As2: Summarizing and note taking	Concept mapping	the importance of the ozone	concepts

ALTERNATIVE INSTRUCTIONAL CONCEPTS IN MATHEMATICS FOR TEACHING DIFFICULT **STRATEGIES**

Alternative Instructional Strategies for teaching difficult concepts of IX Standard Mathematics

S.No	SUB CONCEPT / CONTENT (1)	Methods (2)	Strategies (3)	Techniques (4)	Teacher's Activities (5)	Student's Activities (6)
1	SET / Practical Problems on Set Operations	As1 Demonstration	Brainstorming	Questioning	Poses questions to make the concept clear in a sequential order	Share their ideas on the operations of sets and explain their views
	$\begin{bmatrix} A \\ 2 \\ 10 \\ 8 \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	AS2 Direct instruction	Inquiry based Learning	Investigation	Presents advanced organizers and questions on operators of sets	Critically think and answer the questions
		AS3 Concept mapping	Concept attainment	Explains the relationship of the set operators	Cites examples and defines the task Draws the concept map	Classify the attributes of set operations draws mind maps
		AS:4 Visualisation	Diagrammatic representation	Using Venn diagram model kit	Uses model kits and explains Venn diagram	Absorb the demonstration and represent the problem with Venn diagram

$AC = \sqrt{18} \text{ units}$	AS2 Drill and Practice	Hands on learning	Explanation	Explain the steps in rationalization of surds	Solve problems on rationalization of surds
Identify Surds ? (i) $\sqrt{36}, \sqrt{\frac{50}{98}}, \sqrt{1}, \sqrt{1.44}, \sqrt[3]{32}, \sqrt{120}$ (ii) $\sqrt{7}, \sqrt{48}, \sqrt[3]{36}, \sqrt{5} + \sqrt{3}, \sqrt{1.21}, \sqrt{\frac{1}{10}}$	As3 Classification Method	Concept attainment	Various Examples	Examples and non examples and make the students to identity the surds	Apply the attributes of surds to solve problems

$2x^{2} - 15x - 27 = 2x^{2} - 18x + 3x - 27$ = 2x(x - 9) + 3(x - 9) = (x - 9)(2x + 3) Therefore, (x - 9) and (2x + 3) are the factors of $2x^{2} - 15x - 27$	As3 Direct Instruction Method	Reinforcing efforts	Questioning	Ask questions to check the level of understanding of the students in factorizing trinomials	Answer the questions post by the teacher
Geometry / Properties of Chord of a circle	As1 Inquiry method	Concept attainment	Questioning	Ask questions to the students to elicit the properties of chords of a circle and Summarizes the properties	Analysis the properties of chord Syntheses the properties

The angle subtended by an arc of the circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

9. A school wants to conduct tree plantation programme. For this a teacher allotted a circle of radius 6m ground to nineth standard students for planting sapplings. Four students plant trees at the points A,B,C and D as shown in figure. Here AB = 8m, CD = 10m and AB⊥ CD. If another student places a flower pot at the point P, the intersection of AB and CD, then find the distance from the centre to P.

Statistics / Arithmetic Mean (Grouped

5

frequency distribution) The following data gives the number of residents in an area based on their age. Lets find the average Age

As1 Direct instruction	Concept formation	Task definition	Explain the direct method of calculating arithmetic mean	make connections between the steps in calculating arithmetic mean using direct method
	As1 Direct instruction	As1 Direct instruction Concept formation	As1 Direct instruction Concept formation Task definition	As1 Direct instruction Concept formation Task definition Explain the direct method of calculating arithmetic mean

				1	
$\label{eq:second} \begin{array}{ c c c c c c } \hline {Agc} & 0.10 & 10.20 & 20.30 & 30.40 & 40.50 & 50.60 \\ \hline {\mbox{Number of Residents}} & 2 & 6 & 9 & 7 & 4 & 2 \\ \hline \\ \hline {\mbox{Number of Residents}} & 2 & 6 & 9 & 7 & 4 & 2 \\ \hline \\ \hline {\mbox{Solution}} & & \\ \hline \\ \hline$					
Project Project Project Project Property table of the top speeds of 20 different land animals. Find mean, median and mode, justify your answer. From the record of students particulars of the class, (i) Find the mean age of the class (using class interval) (ii) Calculate the mean height of the class (using dass intervals)	As2 Learning by doing	Project Method	Collecting and grouping data	Gives projects to collect data and tabulate appropriately	Collect data and frame frequency table
Probability / Mutually exclusive Event	AS1 Demonstration Method	Concept formation	Activities based on day to day life (Real life)	Demonstrates with coins, balls, playing cards etc and explains mutually exclusive events	Observe the class and gives their own examples
Random experiment :Flipping a coin Sample space : S={H,T} A={H} B={T} A and B are mutually exclusive	AS2 Inquiry method	Concept attainment	Task definitions	Explains the definition of mutually exclusive events and apply the	Solve problems on addition theorem of probability and understands the

				-		•	4
	An urn contains 4 red balls and 6 blue balls. What is probability of choosing a red ball?				addition theorem of probability	mutually exclusive events.	
7	Co ordinate geometry Positions of ortho center centroid and circum centre $\overbrace{(x_{1},y_{1})^{2}}_{p} \xrightarrow{(x_{1},y_{1})^{2}}_{p} \xrightarrow{(x_{2},y_{3})^{2}}_{p} \xrightarrow{(x_{2},y_{3})^{2}}$	As1 Learning by doing	Visuospatial	Tactile memory and perception	Explains rthocenter, centroid, circumcentre by paper folding method	Observes the teacher and learns the positions of these three centers	

		As2 Direct instruction	Concept attainment	Task definition	Defines the orthocenter, centroid, circumcenter of a triangle	Understands the definitions of the three centers
	Caroli	As3 Drill and practice	Problem solving	Explanation	Explain the Euler line of triangle and solves problems	Solve the problems on centroid and other centers
8	Algebra Word problems based on linear equations in two variables Akshya has 2 rupee coinsand 5 rupee coins of in hr purse, if in all she has 80 coins totalling Rs. 220, how many coins of each kind does she have X+Y=80 2X+5Y=220	As1 Discovery	Collaborative learning	Group work	Explains the most appropriate method of solving linear equations in two variables	Solves the linear equation in two variables

	Tharun's mother is 28 years older than tharun. Tharun's mother is 4 years younger than tharun father. Their total age is 84 years. What is the age of his mother? Tharun's age x mother's age x+28 Father's age x+28+4	AS2 observation	Concept formations	Classify the variables	Guides and structures the equations	Frames linear equations and solves it
9	Mensuration Application of Heron's formula $u = \frac{1}{a} \frac{1}{a} \frac{1}{b} \frac{1}{c}$	As1 Task definition	Concept attainment	Classifies conceptual attributes	Explains the Heron's formula for finding the area of a scalene triangle	Applying the Heron's Formula and solves it
	the area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ sq.units. where $s = \frac{a+b+c}{2}$, 's' is the semi-perimeter (that is half of the perimeter) of the triangle.	AS2 deduction	Analogy	Cue retrieval	Explains the method of folding the right angled quadrilateral to get two triangles using cutouts of right- angled quadrilateral	Identifies two triangles as one right angled triangle and the other the scalene triangle

	Area of $\triangle ABC = \frac{1}{2} \times \text{base} \times \text{height}$ $= \frac{1}{2} \times 8 \times 15 = 60 cm^2$ By Pythagoras theorem, in right angled triangle <i>ABC</i> , $AC^2 = AB^2 + BC^2$ $= 8^2 + 15^2 = 64 + 225 = 289 cm$ Therefore, $AC = \sqrt{289} = 17 cm$ $s = \frac{a+b+c}{2} = \frac{17+12+25}{2} = \frac{54}{2} = 27 cm$ Area of $\triangle ACD$ $= \sqrt{27(27-17)(27-12)(27-25)}$ $= \sqrt{27\times10 \times 15 \times 2}$ $= \sqrt{3 \times 3 \times 2 \times 5 \times 5 \times 3 \times 2}$ $= 3 \times 3 \times 2 \times 5 = 90 cm^2$	AS3 Synthetic method	Problem solving	Deduction	Explains the steps in find the area of triangles and there by the area of the quadrilateral	Find the area of the scalene triangle using Heron's formula. Find the area of the quadrilateral
10	Consistency and inconsistency of linear equations in two variables $\boxed{\text{Compare the ratios}}$ $\boxed{\text{Graphical representation}}$ $\boxed{\frac{a_1}{a_2} \neq \frac{b_1}{b_2}}$ $\boxed{\text{Intersecting lines}}$ $\boxed{\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}}$ $\boxed{\text{Coinciding lines}}$ $\boxed{\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}}$ $\boxed{\text{Coinciding lines}}$ $\boxed{\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}}$ $\boxed{\text{Parallel lines}}$ $\boxed{\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}}$ $\boxed{\text{Parallel lines}}$ $\boxed{\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}}$ $\boxed{\text{Parallel lines}}$	As1 Visualization	Graphic organizers	Visual imagery	Explains the conditions to find the consistency and inconsistency of linear equations using graphic organizers	Visualizes the conditions to find the consistency and inconsistency of linear equations

	As2 Concept map	Concept formation	Classifies consistent and inconsistent equations	Draws concept map and explains the attributes of consistent and inconsistent equations	Draws mind map for the conditions to find the consistency and inconsistency of linear equations
4 3 3 3 4 3 3 4 3 4 3 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5					

	Alternative Instructional	Strategies for t	teaching difficul	lt concepts of X	K Standard Mat	thematics
S.No.	SUB CONCEPT / CONTENT (1)	METHODS (2)	STRATEGIES (3)	TECHNIQUES (4)	TEACHER'S ACTIVITIES (5)	STUDENT'S ACTIVITES (6)
1	SET / Solving problems using Venn Diagram	As1 Demonstration method	Concept attainment	Critical thinking	Teacher demonstrates the Commutative property, Associate property , Distributive property and De Morgan laws by using Chart or Ariel kit model 1. Teacher explain A-B & B-A 2. Teacher explain A/B	Students learns the concept by applying the property one by one 1. Student learn A-B & B-A 2. Student able to do B/A

		AS 2 Direct instruction method	Concept Mapping	Web diagram for exploring knowledge about given concept	3. Teacher explain (A/B) U (A/C)	3. Student learn (A/B) U (A/C)
	$(A \setminus B) \cup (A \setminus C)$	AS3:Learning by doing	Visuospatial	Hands on learning	 4. Teacher explain A/C Teacher instructs the properties by wine LCT 	2. Student able to do B/C & C/A I) Students understand the
Teacher int http Students le text bookS	struct using the website URL code os://youtube/tyDKR4FG3Yw earns through QR code given in the equence and Series /				using IC I	concept through application of technologyii) Students understand the content through QR code

_						
	Sequence and Series/ Solving word problems in AP and GP	AS 1: Drill and practice	Concept attainment	Patterns which occur in day to day life	i) Teacher give examples related	i) Students recollects the
	Ex: 1. In a flower garden, there are 23 rose plants in first row, 21 in second row, 19 in third row and so on. There are five rose plants in last row. 2. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture initaily.				in day to day life ii) Teacher discuss the pattern (Number's) in which succeeding terms are in AP or GP	patterns in day to day life ii) Students create the patterns in the number system on their own
	a,a+d+,a2d,, a+(n-1)d a.ar,ar ² ,,ar ⁿ⁻¹ , Ex: 1. If a person joins his work in 2010 with an annual salary of Rs.30000 and receives an annual increament of	AS 2: Classification of attributes	Concept forming	Developing critical thinking	Teacher classifies AP and GP by using various illustrations related to Students Environment	Students organizes and classifies terms of AP and GP
	Rs.600 2. if Rs.1000 deposited in a bank which pays annual interest compounded annualy. Ex: A man invest R.10000 for two years at the rate of 10% per annum in a bank. Find the diffrence between AP and GP(Simple interest - AP , Compound iterest - GP	AS 3 Analytical and Synthetic Method	Analogy	Identification of familiarities between two concepts	i)Teacher introduce the concept AP and GP ii) Teacher analyses and syntheses difference between AP and GP for the given problem	Students form new sequence by relating with familiar concepts like simple interest

3	Algebra / Solution of a quadratic equation by completing square $Ex:$ $x^{2} + 2x + 1 = 0$ $[x^{2} + 4x + 1 + 3] = 3 = 0$	AS1: Co-operative learning method	Reciprocal teaching	Group discussion	i)Teacher summarizes the concept ii) Teacher clarifies to solve quadratic equation bycompleting square	i) Student actors as a facilitator in a small group ii) Student discusses the ways in solving a quadratic equation
	$[x^{2} + 4x + 1 + 3] - 3 = 0]$ $(x + 2)^{2} - (\sqrt{3})^{2} = 0$ $(x + 2 + \sqrt{3})(x + 2 - \sqrt{3}) = 0$ $a^{2}x^{2} - 3abx + 2b^{2} = 0$ $x^{2} - \frac{3b}{a}x + \frac{2b^{2}}{a^{2}} = 0$ $x^{2} - 2(\frac{3b}{2a})x + \frac{9b^{2}}{4a^{2}} = \frac{9b^{2}}{4a^{2}} - \frac{2b^{2}}{a^{2}}$ $(x - \frac{3b}{2a})^{2} = \frac{9b^{2} - 8b^{2}}{4a^{2}}$ $x - \frac{3b}{2a} = \pm \frac{b}{2a}$	AS2: Demonstration method	scaffolding	Specification and sequencing of activities	 i) Teacher provides cues, hints to solve. ii)Teacher provides structures to transfer the constant, to eliminate the coefficients of x2, to split coefficient of x by second term and using the 	 i) Students link the step one by one for solving i) Students follow the cues given b the teacher.
4	Matrices / Solving equation	AS:1 Inquiry method	Brainstorming	Debate	Debate i)Teacher makes the students to identify rows and columns ii) Explains the various method of solving equations	I) Students write matrices with different number of rows and columns ii) Students solve equations using various methods

	Item 1	ltem 2	Item 3	Item 4
	5	0	1	10
Carbohydrate	0	15	ő	9
Postein	7	12	2	8

Identification of rows and columns

A fruit vendor sells fruits from his shop. Selling prices of Apple, Mango and Orange are Rs.20,Rs10 and Rs.5 each respectively. The sales in three days are given below

Day	Apples	Mangoes	Oranges
1	50	60	30
2	40	70	20
3	60	40	10

Write the matrix indicating the total amount collected on each day and hence find the total amount collected from selling of all three fruits combined.

				solve equations using various methods
AS2: Direct instruction method	Concept attainment	Giving illustration	 I) Cites examples from real life situations ii) simplifies the equation by multiplying rows and columns 	I) Students discover the basic ideas of rows and columns ii) Students solve the equations in groups iii)students provide solutions to the product of matrices

••••

B(0, b) b a $A(a, 0)$ x Fig. 5.28	As2: Analytic and synthetic method	Concept attainment	Concept cantered activity		
a) <u>Slope - point form</u>				i) Teacher explain the concept	i) Student learns the concept by
If the slope <i>m</i> and pair of point				ii) Teacher explain	discussion
(x_1, y_1) , then				idea when to use	ii) Student learn the
$y-y_1=m(x-x_1)$				right formula	formula where to
b) <u>Two - points form :</u> If two pair of points				iii) Teacher	apply
(x_1, y_1) and (x_2, y_2) are given				explain difference	iii) Student discuss
then $\frac{x-x_1}{x-x_1} = \frac{y-y_1}{x-x_1}$				between the	is the group about
$x_2 - x_1 y_2 - y_1$ c) Slope - intercept form				formula	difference using
If the slope m and y Intercept c is					formula
given then					-
y = mx + c					-
d) Intercepts form :					•
If x Intercept a and y Intercept					
b is given then					
$\frac{x}{a} + \frac{y}{b} = 1$					

AS1 i) Teacher **Trigonometry** Direct instruction Explanation i) Students learns Visualization explains the angle of elevation Heights and distance concept of by looking trees, Ex: 1 Elevation and line building, etc A ladder leaning against a of vision vertical wall, makes an angle ii) Students learn of ground. The foot of the ii) Teacher explain angle of depression ladder 3.5m away from the the concept of by looking from the wall. depression top of the building C3.5m B Angle of elevation of Ex : 2 A girl standing on a light house on a cliff near the seashore observes to boats due east of the light house.

65
The angle depression of the two Boats are 30° and 60°	AS2 Demonstration method	Modelling	Observation	I) Teacher explain uses of trigonometry in preparing maps ii) Teacher explains position of an island is relative to the longitudes and	I) Students learns how trigonometry used in maps in real life ii) Students locate the islands in relation to the longitudes and latitudes
Long of Sector of Constraints				latitudes	
If an object is above the horizontal line from our eyes.					
we have to raise our head to view					
the object in this eyes move					
through an angle formed by the					
line of sight and horizontal line is					
angle of elevation.					

	String Paper Clip Using clinometer angle of elevation and depression were explained.	AS3 Learning by doing	Cooperative learning	Hands on learning	Teacher demonstrates angle of depression by using Clinometers	Students learn about the angle depression in group by using Clinometers
7	Mensuration / Combine figures and invariant volumes	AS1 Demonstration method	Analogy	Teacher centered Activity	i) Teacher analyses the combined figures ii) Teacher explain similarities	I) Student identifies the similarities between two objects individually

Teacher explains about the combination of Cone and Semi circle. Like this various combined objects were explained					
$\label{eq:linear}$	AS2 Analytic and synthetic method	Problem solving	Effective instruction by the teacher	 i) Teacher breakdown the combined shape into smaller shape ii) Teacher explains the formula to be applied for the given shape iii) Teacher explain about the solution for given shape 	 i) Students discover the shape involved in the combined shapes ii) Students collect information from various sources regarding a given problem
 I) Teacher asks to visualize the following objects 1. Capsule 2. Water tank 3. Sharpen pencil etc II) Teacher asks the student to identify combined objects III) Teacher ask to write formulae. 	AS3 Demonstration method	Visualizations	Creating mental images	I) Teacher asks the student to visualize the combined objects they could see in day to day life (top capsules , etc)	 i) Students draw the shapes as they visualized ii) Student identify the shapes involved in the drawn diagram iii) Students identifies the formula to solve the combined shape

8	 Statistics / Measure of Dispersion Consider the following two different serious 1) 82,74,89,95 2) 120,62,28,130 Here mean is 85 in both the cases. But the numbers are widely scattered. Now how the data's are dispersed around the mean. 	AS1 Direct instruction	Hypothesis testing	Teacher generates the Hypothesis and test the hypothesis	 i) Teacher generates the hypothesis ii) Teacher investigates the generated hypothesis iii) Teacher explains how to find range, deviation for the data's 	 i) Students extend their understanding from measures of central tendency to measure of dispersion ii) Students starts investigating from general rule iii) Students draws a conclusion from a set of given data.
	Take ten of your friends quarterly mark in mathematics and find 1) Range 2) Co efficient of variation.	AS2 Analytic and synthetic	Project based learning	Student centered approach	 i) Teacher act as a facilitator. ii) Teacher guides in identifying types of dispersion. iii) Teacher guide the students to gather resources and information. 	 i) Teacher act as a facilitator. ii) Teacher guides in identifying types of dispersion. iii) Teacher guide the how to anipulate information.

()¹111

9	Probability / Addition Theorem on Probability $\qquad $	As1: Analytic and synthetic	Concept formation	Classification and organisation	 I) Teacher classifies the events which are mutually exclusive and not so. ii) Teacher organizes the probabilities of the event. iii) Teacher generalizes the data and uses. 	I)Students learn to classify the events which are mutually exclusive and not. ii) Students find $P(A \cup B),$ P(A), P(B), $P(A \cap B)$ iii)Students applies addition theorem
	$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{n(A \cap B)}{n(S)} = \frac{1}{36}$				$P(\overline{A} \cap B) = P(B)$ $-P(A \cap B)$ $P(A \cap \overline{B}) = P(A)$ $-P(A \cap B)$	

10	Geometry/ Solving word problem using Theorem AAA	AS2 Demonstration method	Concept Attainment	Concept centered activity	Teacher demonstrates addition theorem on probability by using Venn Diagrams	Visualize the concepts and understands it.
	SSS SSS SAS SAS	As1 Direct Instruction Method	Concept Attainment	Teacher centered activity to determine the critical attributes	 i) Teacher differentiates similarity in Triangles. ii)Teacher explains the criteria to prove similar triangle (AAA, SAS, SSS, RHS,) 	i) Students compares similarity properties of triangles. ii) Students understand the criterion of two similar triangles in the group activity.